An Investigation to Determine Association between Foodborne Illness and Number of Citations in a Food Establishment

Kenneth W. Sharkey, B.S., R.S.
University of Cincinnati, Department of Public Health Services
Master of Public Health Capstone Presentation
March 3, 2010 at 1 p.m.
Stetson Building Room 4205
Capstone Committee

- William A. Mase, Dr.PH, MPH, MA
- Mohammad Alam, Ph. D., MSc., MS., RS., REHS

A special thanks to my family, and Jun Ying Ph. D.
Purpose of this study

- To determine if the number of CDC foodborne illness risk factors are less likely to be cited than non-CDC foodborne illness risk factors prior to the implementation of the food safety standardization program.
Purpose of this study

- To determine if the number of non-CDC and CDC foodborne illness risk factors cited increase as the risk classification of the establishment increase.
CDC Foodborne Illness Risk Factors

- Food from an unsafe sources
- Improper holding/time and temperature
- Inadequate cooking
- Poor personal hygiene
- Contaminated equipment/prevention of contamination
Overview of the Literature

 - Facilities out of compliance
 - Identifies the CDC foodborne illness risk factors
 - Standardization of FDA staff
 - Training/education of staff
 - Uniform approach
Overview of the Literature

- Cost of foodborne illness outbreak (Martin, Schmidt, WHO)
 - Health care costs
 - Lost work days
 - Food recall, business costs
Overview of the Literature

- Laws, regulations and organizations lag behind scientific knowledge and ability to apply risk factors to an inspection (Woteki and Kineman)

- Local regulatory authority agency responsibility to ensure safe food through risk assessments (Hoag et al.)
Overview of the Literature

- Investigation of Foodborne illnesses (Bryan, Wotekı and Kıneman, Martin and Walls)
Study Design

- This was a descriptive study that compared the CDC and non-CDC foodborne illness risk factors and their association with an establishment risk class.
Study Design

- Identified CDC and non-CDC foodborne illness risk factors in the Ohio Uniform Food Safety Code
- Collected data from the electronic inspection program through CAGIS.
Study Design

- Identifiable information was removed from the data collected
- Paired t-tests were used for each risk class compared CDC vs. non-CDC violations
 - Data prior to implementation of standardization program
Study Design

- ANOVA statistical method was used for association between risk class and CDC and non-CDC foodborne illness risk factors
- Multiple comparisons using Tukey’s method.
Variables

- **Dependant variable**
 - Risk class

- **Independent variables**
 - Total mean number of violations per inspection
 - Mean number of CDC foodborne illness risk factors
 - Mean number of non-CDC foodborne illness risk factors
Risk Class

- Risk class 1, prepackaged food items, baby food and formula, coffee and fountain drinks
- Risk class 2, TCS food held at temp received at, individually packaged TCS foods for immediate service
- Risk class 3, handling, preparing, cooking and then serving TCS foods
Risk Class

- Risk class 4, preparation of food items with several steps including reheating TCS foods, ROP, offering raw TCS meats as a menu item, serving high risk clientele etc....
Limitations

- Type of facilities the sanitarian was assigned
- Location of the facility within the city
- Prior training for the sanitarian
Results and Data, paired t-tests

<table>
<thead>
<tr>
<th>Risk class</th>
<th>CDC</th>
<th>non-CDC</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk class 1</td>
<td>.79 ± .69</td>
<td>1.54 ± 1.30</td>
<td>.001</td>
</tr>
<tr>
<td>Risk class 2</td>
<td>.62 ± .40</td>
<td>1.28 ± .94</td>
<td>.001</td>
</tr>
<tr>
<td>Risk class 3</td>
<td>1.19 ± .59</td>
<td>2.06 ± .98</td>
<td>.001</td>
</tr>
<tr>
<td>Risk class 4</td>
<td>2.02 ± 1.00</td>
<td>2.95 ± 1.04</td>
<td>.001</td>
</tr>
</tbody>
</table>

Source: Cincinnati Health Department
Results and Data, ANOVA

<table>
<thead>
<tr>
<th>Risk class</th>
<th>Total mean per Insp</th>
<th>CDC</th>
<th>non-CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk class 1</td>
<td>2.33</td>
<td>.79 ± .69</td>
<td>1.54 ± 1.30</td>
</tr>
<tr>
<td>Risk class 2</td>
<td>1.90</td>
<td>.62 ± .40</td>
<td>1.28 ± .94</td>
</tr>
<tr>
<td>Risk class 3</td>
<td>3.25</td>
<td>1.19 ± .59</td>
<td>2.06 ± .98</td>
</tr>
<tr>
<td>Risk class 4</td>
<td>4.98</td>
<td>2.02 ± 1.00</td>
<td>2.95 ± 1.04</td>
</tr>
</tbody>
</table>

Source: Cincinnati Health Department
Results and Data

- The P-value < .05 for the ANOVA, is considered statistically significant
- The total mean number of violations did not increase as you increased in risk class
Conclusion

- The t-test affirmed the first hypothesis that there were most non-CDC than CDC foodborne illness risk factors
- The P-value < .05 indicating that the data was significant
Conclusion

- The ANOVA results had a P-value < .05 indicating the data was significant.
- However, this did not affirm the second hypothesis that the total mean number of violations increases as the risk class goes up.
Questions Contact Information

Kenneth W. Sharkey, B.S., R.S.
Sanitarian
Cincinnati Health Department
3845 Wm. P. Dooley by-Pass
Cincinnati, Ohio 45223
email: ken.sharkey@cincinnati-oh.gov
Tel: 513-564-1762
Fax: 513-564-1776